Midterm Exam

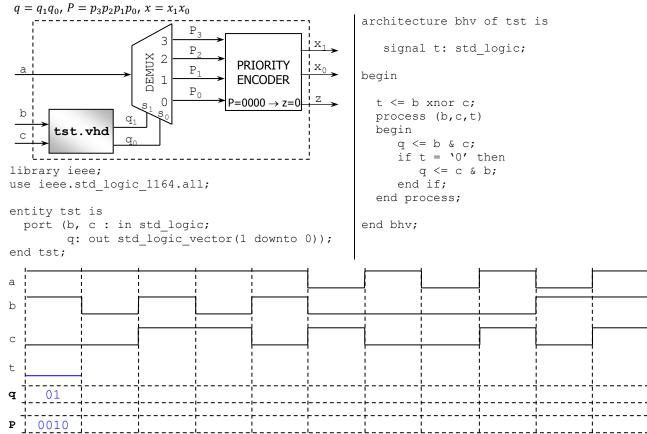
(February 14th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (22 PTS)

a) Complete the following table. The decimal numbers are unsigned: (3 pts.)

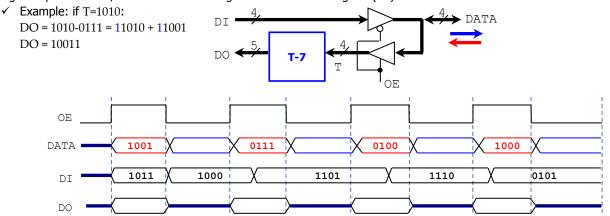
Decimal	BCD	Binary	Reflective Gray Code
			101011
	000100101000		


b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (15 pts.)

	REPRESENTATION						
Decimal	mal Sign-and-magnitude 1's complement		2's complement				
	110001						
			10000				
-32							
			1111				
			0101001				
		1111					

c) Convert the following decimal numbers to their 2's complement representations. (4 pts) \checkmark $^{-17.25}$

PROBLEM 2 (15 PTS)


• Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit.

1

Problem 3 (12 pts)

Complete the timing diagram (signals DO and DATA) of the following circuit. The circuit in the blue box computes the signed operation T-7, with the result having 5 bits. T is a 4-bit signed (2C) number.

PROBLEM 4 (10 PTS)

- A microprocessor has a memory space of 1 MB. Each memory address occupies one byte. $1KB = 2^{10}$ bytes, $1MB = 2^{20}$ bytes, $1GB = 2^{30}$ bytes.
 - a) What is the address bus size (number of bits of the address) of the microprocessor?
 - b) What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? (1 pt.)
 - c) The figure to the right shows four memory chips that are placed in the given positions: Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips. (8 pts)

Address	8 bits
0x	0 256KB
0x : 0x	1 256KB
0x : 0x	2 256KB
0x : 0x	3 256KB

 c_8 c_7 c_6 c_5 c_4 c_3 c_2 c_1 c_0

PROBLEM 5 (15 PTS)

- a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_0 (or b_0 to b_0). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit, (6 pts) √ 37 + 41 √ 37 - 41
- b) The figure shows two 8-bit operands represented in 2's complement. Perf the for t Doe

Perform the 8-bit addition operation, i.e., complete all the carries and the summation bits. Also, indicate the corresponding decimal numbers												0	
for the 8-bit operands and the 8-bit result.	maing acci	mai nambers	=	=	1	1	0	1	0	1	1	1	+
Does this 8-bit operation incur in overflow?	Yes	No	-	=	1	1	1	0	1	0	0	0	
Value of the overflow bit: Value of carry out bit:			=	=									

Decimal

c) Perform binary multiplication of the following numbers that are represented in 2's complement arithmetic. (3 pts) ✓ 1001 x 01001

Problem 6 (10 pts)

Sketch the circuit that computes |A-B|, where A, B are 4-bit signed numbers. For example, $A=0101, B=1101 \rightarrow$ |A - B| = |5 - (-3)| = 8. You can only use full adders (or multi-bit adders) and logic gates. Your circuit must avoid overflow: design your circuit so that the result and intermediate operations have the proper number of bits.

PROBLEM 7 (16 PTS)

In a 4-to-2 priority encoder (like the one in Problem 2), it can be demonstrated that the output $x_0 = \overline{p_3} \, \overline{p_2} p_1 + p_3$.

2

- \checkmark Provide the simplified expression for x_0 and sketch this circuit using logic gates. (3 pts)
- ✓ Implement x_0 using ONLY an 8-to-1 MUX. (3 pts).
- \checkmark Implement x_0 using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed) (10 pts).